Отрицательное тепловое расширение (NTE) считается довольно необычным типом поведения для твёрдых тел. В большинстве случаев вещества при нагревании расширяются. Атомы твёрдых тел начинают с большей амплитудой колебаться в кристаллической решётке и занимают больший объём. Так же ведут себя многие жидкости и газы. Вопреки этой логике, в мире есть вещества, обладающие отрицательным коэффициентом теплового расширения: ярким примером такого поведения считается обычный лёд. Исследователи из Китая и России изучили NTE-поведение вещества со слоистой структурой, чтобы понять, как лучше управлять двумерными материалами с NTE или композитами, в которые входят подобные материалы.
«В этом исследовании мы наблюдали двухмерное (2D) NTE-поведение в кристалле метабората лития (LiBO2), происходящее внутри графитоподобных слоев. Удалось установить, что такое поведение обусловлено необычным уменьшением углов ∠O-Li-O и ∠B-O-B внутри таких слоев, которое в свою очередь вызвано увеличением длин связей Li-O при повышении температуры», — сообщил соавтор статьи, доцент базовой кафедры физики твёрдого тела и нанотехнологий Института инженерной физики и радиоэлектроники СФУ Максим Молокеев.
Метаборат лития — известное неорганическое соединение, соль лития и метаборной кислоты с формулой LiBO2. Это бесцветные кристаллы, хорошо растворимые в воде и образующие кристаллогидраты. Легкость синтеза, а также доступность исходных материалов, позволяет рассматривать эти кристаллы как интересные объекты для изучения двумерного NTE. Также учёных заинтересовали перспективы применения LiBO2 в оптике, ведь материалы с отрицательным тепловым расширением имеют очень широкий спектр применения — это техника, электроника, строительство, медицина и, конечно, фотоника.
«Посредством смешивания LiBO2 с материалом, обладающим обычным тепловым расширением, можно получить различные композитные материалы с нулевым расширением, чтобы стабилизировать эффект „температурных качелей“. Например, стоматологические пломбы и зубная эмаль расширяются с разной скоростью, когда человек пьёт горячий чай. Если бы пломбы изготавливали из композита с нулевым расширением — это бы решило проблему болей, возникающих как реакция на горячий напиток. Что касается оптики, там тоже нужны материалы с хорошо контролируемым тепловым расширением. Скажем, теплопроводность материалов имеет большое значение для сохранения теплового баланса в приложениях лазерной оптики, а также при проектировании оптических линз и подложек», — продолжил Максим Молокеев.
Учёные рассказали про отрицательное тепловое расширение в кристаллах метабората лития
Отрицательное тепловое расширение (NTE) считается довольно необычным типом поведения для твёрдых тел. В большинстве случаев вещества при нагревании расширяются. Атомы твёрдых тел начинают с большей амплитудой колебаться в кристаллической решётке и занимают больший объём. Так же ведут себя многие жидкости и газы. Вопреки этой логике, в мире есть вещества, обладающие отрицательным коэффициентом теплового расширения: ярким примером такого поведения считается обычный лёд. Исследователи из Китая и России изучили NTE-поведение вещества со слоистой структурой, чтобы понять, как лучше управлять двумерными материалами с NTE или композитами, в которые входят подобные материалы.
«В этом исследовании мы наблюдали двухмерное (2D) NTE-поведение в кристалле метабората лития (LiBO2), происходящее внутри графитоподобных слоев. Удалось установить, что такое поведение обусловлено необычным уменьшением углов ∠O-Li-O и ∠B-O-B внутри таких слоев, которое в свою очередь вызвано увеличением длин связей Li-O при повышении температуры», — сообщил соавтор статьи, доцент базовой кафедры физики твёрдого тела и нанотехнологий Института инженерной физики и радиоэлектроники СФУ Максим Молокеев.
Метаборат лития — известное неорганическое соединение, соль лития и метаборной кислоты с формулой LiBO2. Это бесцветные кристаллы, хорошо растворимые в воде и образующие кристаллогидраты. Легкость синтеза, а также доступность исходных материалов, позволяет рассматривать эти кристаллы как интересные объекты для изучения двумерного NTE. Также учёных заинтересовали перспективы применения LiBO2 в оптике, ведь материалы с отрицательным тепловым расширением имеют очень широкий спектр применения — это техника, электроника, строительство, медицина и, конечно, фотоника.
«Посредством смешивания LiBO2 с материалом, обладающим обычным тепловым расширением, можно получить различные композитные материалы с нулевым расширением, чтобы стабилизировать эффект „температурных качелей“. Например, стоматологические пломбы и зубная эмаль расширяются с разной скоростью, когда человек пьёт горячий чай. Если бы пломбы изготавливали из композита с нулевым расширением — это бы решило проблему болей, возникающих как реакция на горячий напиток. Что касается оптики, там тоже нужны материалы с хорошо контролируемым тепловым расширением. Скажем, теплопроводность материалов имеет большое значение для сохранения теплового баланса в приложениях лазерной оптики, а также при проектировании оптических линз и подложек», — продолжил Максим Молокеев.
Интересным результатом работы стало обнаружение факта, что в кристалле метабората лития решающую роль в поведении 2D-NTE играет примерно одинаковое растяжение Li-O как в плоскости слоя, так и вне плоскости. Это позволило пересмотреть сложившееся мнение о том, что межслоевое взаимодействие должно быть значительно слабее внутрислоевого и значительно расширило область исследования материалов NTE.
Изучив оптическую пропускающую способность кристалла LiBO2, учёные выяснили, что материал имеет высокую прозрачность в диапазоне 190–5790 нм при комнатной температуре и обладает широким спектральным диапазоном (от ультрафиолетового до инфракрасного излучения). Расчёты свидетельствуют, что широкий диапазон оптического пропускания будет поддерживаться и при изменении температуры, что очень важно для материала, применяющегося в оптике. Благодаря преимуществу 2D-NTE в сочетании с превосходными оптическими свойствами, LiBO2 найдёт широкое применение в сверхточных оптических устройствах, работающих при низких температурах.